Rigidity of the sharp Bezout estimate on nonnegatively curved Riemann surfaces
نویسندگان
چکیده
In this short note, by using a general three circles theorem, we show the rigidity of sharp Bezout estimate first found Gang Liu on nonnegatively curved Riemann surfaces.
منابع مشابه
Rigidity for Nonnegatively Curved Metrics
We address the question: how large is the family of complete metrics with nonnegative sectional curvature on S × R? We classify the connection metrics, and give several examples of non-connection metrics. We provide evidence that the family is small by proving some rigidity results for metrics more general than connection metrics.
متن کاملRigidity for Nonnegatively Curved Metrics on S × R
We address the question: how large is the family of complete metrics with nonnegative sectional curvature on S2 × R3? We classify the connection metrics, and give several examples of non-connection metrics. We provide evidence that the family is small by proving some rigidity results for metrics more general than connection metrics.
متن کاملinvestigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem
در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...
Space of Nonnegatively Curved Metrics and Pseudoisotopies
Let V be an open manifold with complete nonnegatively curved metric such that the normal sphere bundle to a soul has no section. We prove that the souls of nearby nonnegatively curved metrics on V are smoothly close. Combining this result with some topological properties of pseudoisotopies we show that for many V the space of complete nonnegatively curved metrics has infinite higher homotopy gr...
متن کاملNonnegatively and Positively Curved Invariant Metrics on Circle Bundles
We derive and study necessary and sufficient conditions for an S-bundle to admit an invariant metric of positive or nonnegative sectional curvature. In case the total space has an invariant metric of nonnegative curvature and the base space is odd dimensional, we prove that the total space contains a flat totally geodesic immersed cylinder. We provide several examples, including a connection me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2023
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2023.05.005